Noncommutative Geometry and String Duality
نویسنده
چکیده
A review of the applications of noncommutative geometry to a systematic formulation of duality symmetries in string theory is presented. The spectral triples associated with a lattice vertex operator algebra and the corresponding Dirac-Ramond operators are constructed and shown to naturally incorporate target space and discrete worldsheet dualities as isometries of the noncommutative space. The target space duality and diffeomorphism symmetries are shown to act as gauge transformations of the geometry. The connections with the noncommutative torus and Matrix Theory compactifications are also discussed. DSF/13-99 , NBI-HE-99-08 , hep-th/9904064 April 1999
منابع مشابه
Duality Symmetries and Noncommutative Geometry of String Spacetimes
We examine the structure of spacetime symmetries of toroidally compactified string theory within the framework of noncommutative geometry. Following a proposal of Fröhlich and Gawȩdzki, we describe the noncommutative string spacetime using a detailed algebraic construction of the vertex operator algebra. We show that the spacetime duality and discrete worldsheet symmetries of the string theory ...
متن کاملElectric - magnetic Duality in Noncommutative Geometry
The structure of S-duality in U(1) gauge theory on a 4-manifold M is examined using the formalism of noncommutative geometry. A noncommutative space is constructed from the algebra of Wilson-’t Hooft line operators which encodes both the ordinary geometry of M and its infinite-dimensional loop space geometry. S-duality is shown to act as an inner automorphism of the algebra and arises as a cons...
متن کاملString Geometry and the Noncommutative Torus
We construct a new gauge theory on a pair of d-dimensional noncommutative tori. The latter comes from an intimate relationship between the noncommutative geometry associated with a lattice vertex operator algebra A and the noncommutative torus. We show that the tachyon algebra of A is naturally isomorphic to a class of twisted modules representing quantum deformations of the algebra of function...
متن کاملar X iv : h ep - t h / 00 12 14 5 v 3 2 9 Ju l 2 00 1 Introduction to M ( atrix ) theory and noncommutative geometry
Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...
متن کاملJa n 20 01 Introduction to M ( atrix ) theory and noncommutative geometry
Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...
متن کامل